MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

Medicineworld.org: Genes offer researchers a 'crystal ball'

Back to cancer blog Blogs list Cancer blog  


Subscribe To Cancer Blog RSS Feed  RSS content feed What is RSS feed?

Genes offer researchers a 'crystal ball'

Genes offer researchers a 'crystal ball'
The science of cancer prevention has advanced to the point where scientists now say they can detect "cancer genes" in the breath of smokers, and can test the presence of two proteins in men they say will predict development of prostate cancer a decade in advance. All of these novel findings need much more examination, of course, but researchers at the American Association for Cancer Research's Frontiers in Cancer Prevention Research meeting, say these examples illustrate how it is becoming increasingly possible to use genes and their protein products to help predict and diagnose cancer, as well as choose treatment that offers the most potential for a good result. These scientists will also discuss a test that can pick out patients who have pancreas cancer - an advance that offers hope the disease can be treated at earlier stages than it is now - and how several unique genes can predict which prostate cancer or patients with lung cancer will develop aggressive tumors that need additional therapy. Cancer is a disease of genes, they say, so genes can be employed as a crystal ball to thwart the disease.

Lung carcinogenesis tracked by DNA methylation mapping in exhaled breath.

For the first time, scientists have demonstrated that it is possible to detect DNA methylation in the breath of smokers and patients with lung cancer, suggesting that, in theory, it may be possible to use this technique to identify people who have undiagnosed lung cancer or are at high risk of developing the disease.

Investigators at the Wadsworth Center, the public health laboratory of the New York State Department of Health, have been able to develop an assay that simultaneously detects the presence of methylation in six tumor suppressor genes - a process by which a gene is chemically silenced. The assay examines the promoter region of a gene, where certain cytosine nucleotide bases may be methylated, preventing the gene from being expressed.

The seven participants tested so far breathe for ten minutes into a commercially available handheld device, which cools the air, forming a condensed vapor, to which the methylation assay is applied. Investigators found it could detect the presence of the methylated form in all six tumor suppressor genes. For RASSF1A, the test was negative in non-smokers, and positive in both current and ex-smokers. For DAPK, methylation was more variable, given smoking status. The four other tested genes (p16, MGMT, PAX5B,CDH1) known to be methylated in various stages of lung cancer development, were minimally or not methylated, in this pilot study of predominantly cancer-free smokers.

"Dr. Weiguo Han and I have shown that this approach is technically feasible, and if further research demonstrates the assay can measure DNA in such a way that it diagnoses or predicts lung cancer, this could be important for non-invasive lung cancer testing," said the study's lead author, Simon D. Spivack, M.D., M.P.H., a research doctor at the Wadsworth Center, and a specialist in lung diseases. "But we are a long way from that point." Han, a post-doctoral fellow in Spivacks' laboratory and the study's first author, will be presenting the findings.

Spivack said his study was only the third to date that proved DNA could be tested in condensed breath - German scientists reported the first such result in 2003, followed by an Italian group in 2005 - and the first to find methylation-silenced tumor suppressor genes in the breath of patients at risk or harboring lung cancer.

"The concept of testing exhaled breath is not new - that's what breathalyzers do when they measure small volatile molecules such as alcohol, as well as inflammation molecules that are currently being assayed to test the activity of asthma and other lung diseases," said Spivack. "But what is rather remarkable here is that DNA can be tested in the air that comes from the lungs and airways, and that it might be possible to use this in diagnosis of lung cancer in particular, and gene-dysregulation disorders of the lung, in general".

The DNA is thought to bereleased when cells turn over, or are damaged, in the lungs and airways, he said. "Eventhough it is not possible to say at this point the precise anatomic origin of the airway-derived DNA being tested, it may be that different patterns of gene methylation will themselves actually map the origin of this DNA to particular regions of the airway," Spivack said.

"Our goal is early detection of lung cancer and risk stratification," he said. "If all we can do is confirm that a smoker is smoking, or that a lung cancer patient has cancer, then this test will be meaningless. But we now know it is technically feasible to measure DNA methylation in breath".

Multiplexed serum markers screening for detection of pancreas cancer.

A panel of 10 blood biomarkers performed almost perfectly in picking out people who had pancreas cancer from those who didn't, as per scientists at the University of Pittsburgh. The advance raises hopes that a test can be developed to screen for the aggressive cancer in time to treat it, they say.

"Early detection of pancreas cancer is crucial to survival, but there has been no way to diagnose it early before symptoms occur," said the lead investigator, Anna E. Lokshin, Ph.D., an associate professor of medicine and pathology at the University of Pittsburgh School of Medicine. "This assay represents a new way to screen for disease that appears to be applicable to pancreas cancer, and potentially, to other cancer types".

The assay contains the largest panel of blood-based biomarkers to be examined simultaneously in pancreas cancer. It consists of proteins known to be secreted by pancreatic tumors as well as proteins that represent the body's response to that tumor growth, Lokshin said.

"Tumors are located in the context of certain tissues, and those tissues react in their own individual ways to the cancer," she said. "For example, tissue-specific proteins try to fight the cancer, and each tumor type grows blood vessels in tissue uniquely, so we believe the body responds differently to each kind of cancer".

The scientists initially reviewed a panel of 44 protein biomarkers, including cytokines, chemokines, adhesion molecules and hormones, and used blood from 100 pancreas cancer patients and a control group of 400 healthy people to find those linked to the cancer. They used a microbead array, which can sample up to 100 different proteins simultaneously, and found 10 biomarkers that offered the highest diagnostic power, Lokshin said. Two of those biomarkers are CA125, which can detect many cancers but which is not very specific, and CA19-9, which has been known to correlate weakly with pancreas cancer.

They observed that this panel of markers correctly identified pancreas cancers 97 percent of the time, with a sensitivity of 95 percent (meaning it could correctly identify malignant lesions) and with a 98 percent specificity (the ability to detect truly negative cases).

The scientists are continuing to study, validate, and perfect the assay, and test its ability to identify pancreas cancer at early, treatable stages. Eventhough pancreas cancer is relatively rare, survival is poor in comparison to most other forms of cancer - it is the fourth leading cause of cancer-related deaths in males and the fifth-leading cause of cancer-related deaths in females.

A diagnostic screen for pancreas cancer would likely first be used in smokers, because use of tobacco is a known risk factor for developing pancreas cancer, Lokshin said.

The scientists also are in the process of developing similar assays for ovarian, breast, lung, endometrial, head and neck, and esophageal cancers. "So far, every panel is different for each cancer to the point where we can say with greater than 97 percent certainty which cancer it is," she said.

"Surprisingly, eventhough in theory body response could be similar for several cancers, in practice it is very different".

TMPRSS2-ERG fusion prostate cancer: an early molecular event linked to invasion.

The presence of a gene fusion in prostate tumors is significantly linked to aggressive cancer, metastatic spread, and an increased probability of death, a team of scientists is reporting.

They say that the new gene, formed by the fusion of TMPRSS2 and ERG, may serve as a biomarker to separate patients who might benefit from radical prostate cancer treatment from those who potentially need little, if any, therapy.

"We believe this gene has the potential to be used as a diagnostic and prognostic test, which could offer thousands of patients peace of mind and spare them from unnecessary surgery and treatment," said the study's lead author, Sven Perner, M.D.,, a postdoctoral fellow in the Department of Pathology at Harvard University's Brigham and Women's Hospital in Boston. He worked with scientists from the Universities of California and Michigan, Johns Hopkins University and McGill University in Montreal.

Perner and colleagues reported the discovery of the fused gene last year and they now say that TMPRSS2-ERG occurs in about 50 percent of prostate cancers - making it the most common genetic aberration in human cancer, and the first one found in a common solid cancer. Fused genes and chromosomal rearrangements have been found in several blood cancers, such as chronic myelogenous leukemia (CML) and in soft tissue tumors, such as Ewing's sarcoma, but these diseases are rare in comparison to prostate cancer, which is one of the leading cancers among American men.

In this study, the scientists sought to learn whether TMPRSS2-ERG is linked to a particular prostate cancer stage, and how it might be contributing to development of the cancer. They gathered 406 prostate tissue samples, representing a range of benign, precursor, and cancerous prostate lesions, and used a FISH analysis to look for TMPRSS2-ERG. They didn't find any evidence of the fused gene in non-malignant samples, but found it was present in 48.5 percent of localized prostate cancer tumors, 30 percent of hormone-nave metastases, and in 33 percent of hormone refractory metastasis, as well as in about 20 percent of prostatic intraepithelial neoplasias, a lesion thought to beprecursor of invasive prostate cancer.

The researchers also discovered that the gene fusion could occur in two different ways. The genes, TMPRSS2, which is regulated by the male sex-hormone androgen, and ERG, which is a potential oncogene, are located close to one another on chromosome 21. When fused, TMPRSS2 drives over-expression of the ERG gene. As per Perner, fusion can occur when the piece of DNA separating the genes breaks off and the genes merge (a process described as "fusion through deletion"), or if parts of each gene break off and switch positions ("translocation").

They observed that TMPRSS2-ERG fusion through deletion was more common in the tumor samples as in comparison to TMPRSS2-ERG fusion through translocation. More recent work has found a significant association between TMPRSS2-ERG fusion and death from prostate cancer, eventhough the scientists have still not been able to determine which fusion form predicted the highest risk of death.

Perner says researchers are hoping to find a small molecule to inhibit the TMPRSS2-ERG fusion protein in the same way that the drug Gleevec has revolutionized care of CML.

Prediagnostic interleukin-6, C-reactive protein and prostate cancer incidence and mortality.

Increased levels of two markers of inflammation, interleukin-6 (IL-6) and C-reactive protein (CRP), are significantly linked to prostate cancer incidence and mortality almost a decade previous to diagnosis, say scientists at the Harvard School of Public Health.

They also observed that elevated CRP in these men was linked to a two hundred percent increased risk of developing fatal prostate cancer, in comparison to men with the lowest levels of the protein.

"The results of this study provide further evidence that inflammation is involved in development and progression of prostate cancer," said the study's lead author, Jennifer Rider Stark, a graduate student in epidemiology.

Stark said that IL-6 and CRP were more strongly linked to prostate cancer risk and death from prostate cancer in normal weight men. Because IL-6 is secreted from adipose (fat) tissue, levels of the cytokine are naturally higher in overweight or obese men. "It is possible that high levels of IL-6 and CRP in men with a healthy body weight may be more indicative of a pro-inflammatory environment in the prostate," she said.

Some studies have already shown that high levels of IL-6 and CRP can be linked to a poor prognosis in patients with prostate cancer, but this is one of only a few studies to examine whether these markers can predict risk before symptoms develop and cancer is diagnosed.

The findings come from a prospective study nested within the Physician's Health Study, and included 516 men who later developed prostate cancer and 516 matched controls who did not. The scientists examined blood taken from each participant early in the study - a median of 9.4 years before prostate cancer was diagnosed in the cases. Levels of IL-6 and CRP were compared among men who did and did not go on to develop cancer. Long-term follow-up of the cases also allowed the scientists to assess the effect of these markers on prostate cancer mortality.

They observed that high levels of CRP in the blood was linked to a higher occurence rate of prostate cancer development among all patients and linked to a two hundred percent increased risk of developing lethal prostate cancer. IL-6 levels were not linked to prostate cancer risk overall. But when they separated out men by body mass index, those who had a healthy weight and high IL-6 in their blood had a 40 percent higher risk of developing prostate cancer.

Scientists suspect that abnormal amounts of IL-6 and CRP are markers of biological processes involved in development of many diseases, including cancer. IL-6 is secreted by immune cells in response to infection or trauma, and it, in turn, stimulates synthesis of CRP in the liver, which is believed to play a role in response to infections and cellular damage control. CRP has been found to be a marker of cardiovascular disease, diabetes and colon cancer, but its use as a cardiology screening test has been controversial.

Stark noted that the predictive power of these two markers for determining prostate cancer risk and mortality needs to be confirmed in other prospective studies. She added, "Understanding the role of inflammation in prostate cancer is important because inflammatory pathways could potentially be targeted for prevention and therapy".

Characteristics of long-term lung cancer survivors.

In preliminary findings from a research study that's ongoing, scientists at Mayo Clinic have identified four different factors they say predicts long-term survival in patients diagnosed with lung cancer, and one of the strongest is inheritance of a gene variant, GSTM1 positive, which is more efficient than another allele type of the GSTM1 gene at detoxifying carcinogens.

They observed that patients with a null type at this gene were four times more likely to die within two years as were matched patients who had the positive variant.

The scientists also observed that patients who had surgery, who were active, and whose cancer did not come back or progress were much more likely to survive five years or longer.

"Outcome varies among patients with lung cancer, even within groups that have the same stage at the time of diagnosis, and so it is difficult to know how aggressively to treat and provide follow-up care for individual patients," said the study's lead investigator, Ping Yang, M.D., Ph.D., a clinical and genetic epidemiologist at Mayo Clinic.

"In order to enhance both survival and quality of life, we are trying to establish a model that will identify patients who would benefit from additional clinical intervention, and the data we have accumulated to date could be enormously helpful," she said.

To derive these predictive factors, the scientists aim to compare 400 lung-cancer patients treated at Mayo Clinic and who have survived five or more years, with 400 patients who lived less than two years after therapy. The scientists match the groups by age at diagnosis, gender, tumor cell type, cancer stage and the number of primary lung cancers, and they examine blood samples and follow the progress of the patients' disease as well as their quality of life.

In an interim analysis of data on 150 patients in each group, the scientists specifically observed that patients who experienced any progression or recurrence of their cancer were almost three times more likely to die within two years, in comparison to patients of the same cancer stage whose disease did not progress or return.

They also concluded that patients with lung cancer who had surgery were three times as likely to have longer survival as matched patients who did not have surgery. "This can be very useful information for patients who are undecided about whether they should risk having surgery," she said.

Patients who reported being "unable to do work or could only do light work" were at a 2.7-5.8 fold higher probability of dying within two years than were patients who were active, the scientists also discovered. "The clinical care of these patients is a long- term process," Yang said. "If, through follow-up and monitoring, we find a patient is physically inactive, we may recommend exercise and rehabilitation as appropriate to keep them stronger".

Knowing the contribution of inheriting a GSTM1 gene form to outcome is also important, she said. "If our model tells us that a patient's cancer has a higher chance of recurring or progressing because of innate genetics in metabolism, we can watch them more closely, and consider treating them aggressively and promoting preventive measures," Yang said.

The GSTM1 gene is just one of a number of candidate genes the researchers are studying in these patients.


Posted by: Janet    Source




Did you know?
The science of cancer prevention has advanced to the point where scientists now say they can detect "cancer genes" in the breath of smokers, and can test the presence of two proteins in men they say will predict development of prostate cancer a decade in advance. All of these novel findings need much more examination, of course, but researchers at the American Association for Cancer Research's Frontiers in Cancer Prevention Research meeting, say these examples illustrate how it is becoming increasingly possible to use genes and their protein products to help predict and diagnose cancer, as well as choose treatment that offers the most potential for a good result. These scientists will also discuss a test that can pick out patients who have pancreas cancer - an advance that offers hope the disease can be treated at earlier stages than it is now - and how several unique genes can predict which prostate cancer or patients with lung cancer will develop aggressive tumors that need additional therapy. Cancer is a disease of genes, they say, so genes can be employed as a crystal ball to thwart the disease.

Medicineworld.org: Genes offer researchers a 'crystal ball'

Main Page| Cancer blog| Cancer blogs list| Lung cancer blog| Colon cancer blog| Prostate cancer blog| Breast cancer blog| Diabetes watch blog| Heart watch blog| Allergy blog| Bladder cancer blog| Cervical cancer blog| Colon cancer news blog| Diabetes news blog| Esophageal cancer blog| Gastric cancer blog| Health news blog| Heart news blog| Infectious disease blog| Kidney watch blog| Lung disease blog| Lung cancer news blog| Mesothelioma blog| Neurology blog| Breast cancer news blog| OBGYN blog| Ophthalmology blog| Ovarian cancer blog| Cancer news blog| Pancreas cancer blog| Pediatrics blog| Prostate cancer news blog| Psychology blog| Research blog| Rheumatology blog| Society news blog| Uterine cancer blog| Weight watch blog|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.