MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

From Medicineworld.org: Cell-based Nano Machine

Cancer main Cancer news Breast cancer  


Do You Read All Of Our Cancer Blogs?

Do You Read All Of Blogs?
Do you read all of the blogs published by medicineworld.org? Many of our bloggers are busy keeping you updated on the various health related topics. We publish the following blogs at this time.

Cancer blog: I manage the cancer blog with lots of help and support form other bloggers. Through this cancer blog my friends and I try to bring stories of hope for patients with cancer. The cancer blog often republishes important blog posts from other cancer related blogs at Medicineworld.org. If you are searching for a blog that covers wide variety of cancer topics, this may be the one for you.

Breast cancer blog: Breast cancer blog is run by Emily and other bloggers and they bring you the latest stories, news and events that are related to breast cancer. Increasing awareness about breast cancer among women and in the general population is the main goal of this breast cancer blog.

Lung cancer blog: Lung cancer blog is managed by Scott with the help of other bloggers. Through this blog Scott and his friends constantly remind the readers about the dangers of smoking. It's a never-ending struggle against this miserable disease with which a social stigma of smoking is associated.

Colon cancer blog: Colon cancer blog is run by Sue and other bloggers. Sue brings a personal touch to the colon cancer blog since her mother died of colon cancer few years ago. She writes about stories, research news and advances in treatment related to colon cancer.

Prostate cancer blog: Prostate cancer is the most common cancer among American men. American Cancer Society estimates that over 230,000 new cases of prostate cancer occur in the United state every year. This important blog about prostate cancer is run by Mark and other bloggers. This blog brings news, stories, and other personal observations related to prostate cancer.

Medicineworld.org publishes a diabetes watch blog and this blog is run by JoAnn other bloggers. This diabetes watch blog brings you the latest in the field of diabetes. This includes personal stories, advances in diagnosis and treatment, and other observations about diabetes. Improving awareness about diabetes is an important mission of this group.

Janet      

Cell-based Nano Machine


Cell-based Nano Machine Image courtesy of Whitehead Institute
Scientists have known for some time that a long, fibrous coil grown by a single-cell protozoan is, gram for gram, more powerful than a car engine. Now, scientists at Whitehead Institute-together with colleagues at MIT, Marine Biological Laboratory in Woods Hole, MA, and University of Illinois, Chicago-have found that this coil is far stronger than previously thought. In addition, the scientists have discovered clues into the mechanism behind this microscopic powerhouse.

"These findings are twofold," says Danielle France, a graduate student in the lab of Whitehead Member Paul Matsudaira, and, along with Matsudaira, a member of MIT's Division of Biological Engineering. "First, they give us an idea of how a cell can manage to generate such enormous force; and second, they provide clues for how engineers might reconstruct these mechanisms for nano-scale devices."

France will present her findings Sunday, December 11, at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco.

Researchers have known about this nano-spring for roughly 300 years, ever since Anton van Leeuwenhoek first observed the protozoan, Vorticella convallaria, through a hand-made microscope. The spring in the unicellular Vorticella is a contractile fiber bundle, called the spasmoneme, which runs the length of the stalk. At rest, the stalk is elongated like a stretched telephone cord. When it contracts, the spasmoneme winds back in a flash, forming a tight coil. To find out how strongly Vorticella recoils, France and his colleagues used a unique microscope to apply an extra load to the spring. The microscope, developed by Shinya Inoue and his colleagues at the Marine Biological Laboratory in Woods Hole, MA, uses a spinning platform to increase the centrifugal force exerted against the protozoan.

In the past, scientists have measured Vorticella's ability to recoil its spring at 40 nano newtons of force and at a speed of eight centimeters per second, units of measurement that are typically too large to be relevant for biological processes. (These measurements, when scaled up to the size of a car engine, prove the Vorticella to be the more powerful of the two.) However, when France used the centrifuge microscope, she discovered that the spring was able to recoil against as much as 300 nano newtons of force.

"This is the maximum amount of power we can currently test," says France. "We suspect the coil is even more powerful."

France and his colleagues also made an important link between the engine's fuel, calcium, and a major protein component of the stalk. This protein, centrin, belongs to a class of proteins that can be found in organisms ranging from green algae to humans. When the scientists introduced an antibody for the Vorticella centrin into the cell, the spring was no longer able to contract, indicating that the cell uses a powerful centrin-based mechanism, one that is unlike other known cellular engines.

"When it comes to creating nano devices, this is a great mechanism for movement," says France. "Rather than requiring electricity, this is a way to generate movement simply from a change in the chemical environment. Here, a simple change in calcium would power this spring." France and his colleagues are now developing methods for replicating this mechanism in the lab.


Source: Whitehead Institute for Biomedical Research


Did you know?
Scientists have known for some time that a long, fibrous coil grown by a single-cell protozoan is, gram for gram, more powerful than a car engine. Now, scientists at Whitehead Institute-together with colleagues at MIT, Marine Biological Laboratory in Woods Hole, MA, and University of Illinois, Chicago-have found that this coil is far stronger than previously thought. In addition, the scientists have discovered clues into the mechanism behind this microscopic powerhouse.

Medicineworld.org: Cell-based Nano Machine

A look at genes defensive playbook| An alternative to mouse in laboratory| Cell signaling secrets| Charging blood forming stem cells| Clinical research award| Functioning artificial proteins using natures rules| Nano particles to target tumors| Nanotechnology to help with bad hair days| New bio nanotube| Protein serves as motor and steering wheel for regenerating nerves| Translation factor eff1a2 may be an oncoprotein| Tunnel for communication between immune cells| Uncoding the memory code|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.