MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

From Medicineworld.org: Discovery of Remarkable Developmental Pathway

Health news Asthma Hypertension  


Do You Read All Of Our Cancer Blogs?

Do You Read All Of Blogs?
Do you read all of the blogs published by medicineworld.org? Many of our bloggers are busy keeping you updated on the various health related topics. We publish the following blogs at this time.

Cancer blog: I manage the cancer blog with lots of help and support form other bloggers. Through this cancer blog my friends and I try to bring stories of hope for patients with cancer. The cancer blog often republishes important blog posts from other cancer related blogs at Medicineworld.org. If you are searching for a blog that covers wide variety of cancer topics, this may be the one for you.

Breast cancer blog: Breast cancer blog is run by Emily and other bloggers and they bring you the latest stories, news and events that are related to breast cancer. Increasing awareness about breast cancer among women and in the general population is the main goal of this breast cancer blog.

Lung cancer blog: Lung cancer blog is managed by Scott with the help of other bloggers. Through this blog Scott and his friends constantly remind the readers about the dangers of smoking. It's a never-ending struggle against this miserable disease with which a social stigma of smoking is associated.

Colon cancer blog: Colon cancer blog is run by Sue and other bloggers. Sue brings a personal touch to the colon cancer blog since her mother died of colon cancer few years ago. She writes about stories, research news and advances in treatment related to colon cancer.

Prostate cancer blog: Prostate cancer is the most common cancer among American men. American Cancer Society estimates that over 230,000 new cases of prostate cancer occur in the United state every year. This important blog about prostate cancer is run by Mark and other bloggers. This blog brings news, stories, and other personal observations related to prostate cancer.

Medicineworld.org publishes a diabetes watch blog and this blog is run by JoAnn other bloggers. This diabetes watch blog brings you the latest in the field of diabetes. This includes personal stories, advances in diagnosis and treatment, and other observations about diabetes. Improving awareness about diabetes is an important mission of this group.

Janet      

Discovery of Remarkable Developmental Pathway


Discovery of Remarkable Developmental Pathway Image: Courtesy of Bruno Reversade and Edward De Robertis/HHMI at UCLA
Howard Hughes Medical Institute scientists have discovered an important regulatory pathway that enables frog embryos to develop normally even after being split in half - as happens in the development of identical twins.

The scientists said their findings suggest that efforts to apply embryonic stem cells therapeutically to regenerate damaged or diseased tissue may have to overcome similar self-regulatory mechanisms present in stem cells. Such mechanisms might otherwise drive stem cells to attempt to differentiate into embryos with a number of cell types, rather than restricting themselves to a desired single type of tissue.

The researchers, graduate student Bruno Reversade and HHMI investigator Edward M. De Robertis, both at the University of California at Los Angeles, published their findings in the The experiments were conceived in an attempt to learn more about the mechanisms underlying the establishment of a morphogenetic field. This field consists of a gradient of regulatory proteins that aids in organizing the differentiation of embryonic cells and gives an organism its overall shape. Eventhough scientists had known that morphogenetic fields were responsible for the embryo's remarkable resiliency, very little was understood about how they function at the molecular level, said De Robertis.

For their studies, Reversade and De Robertis used early embryos of the African toad Xenopus. Widely used in embryological studies, Xenopus embryos are easy to grow and can be manipulated by tissue transplantation techniques. The scientists studied Xenopus embryos in the blastula stage, which resembles a hollow sphere of a few thousand cells.

The researchers were seeking to understand more about the regulatory role of a family of proteins called bone morphogenetic proteins (BMPs). Certain BMPs are known to be key regulators of the dorsoventral (back-to-belly) patterning of embryos. In such patterning, dorsal cells differentiate into neural cells and ventral cells become epidermal cells.

"While BMPs were known to be important in this system, it had never been possible, for example, to turn an embryo completely into brain cells, or to destroy this morphogenetic system," said De Robertis. "The embryo always tries to self-regulate and recover."

In their experiments, the scientists split Xenopus embryos into dorsal and ventral halves and used techniques that enabled them to inhibit BMP signaling selectively in the halved embryos. They then observed what effects their manipulations had on embryonic development.

These experiments revealed that while the ventral half of the embryo mandatory specific BMPs, "it was rather shocking to us that the dorsal part of the embryo developed fairly normally," said De Robertis. The researchers' next series of experiments revealed that dorsal development mandatory another member of the BMP family, called anti-dorsalizing morphogenetic protein (ADMP).

Their studies revealed that the two kinds of proteins in the two halves of the embryo were regulated in a "see-saw" fashion. For example, when the scientists decreased BMP signaling levels, ADMP levels would rise, and vice versa. Such compensatory ability is a key to self-regulation in the embryo, said De Robertis.

To their surprise, however, when they inhibited the activity of all the relevant regulators - BMP2, 4 and 7, and ADMP - the entire surface of the embryo became neural tissue. "This is a major transformation of a type you almost never see in embryos, said De Robertis. "It told us that BMPs play a crucial role in the establishment of a self-regulating morphogenetic field for dorsoventral patterning." In addition, the scientists identified many other regulatory molecules that "fine tune" the morphogenetic field by selectively inhibiting BMPs.

One of the most dramatic results came from experiments in which the researchers grafted material from either dorsal or ventral BMP sources into the BMP-depleted embryos. The grafting restored the normal formation of the embryos.

"We think this finding is important in showing that the embryo is probably patterned by two gradients of BMP - one from the dorsal side and one from the ventral," said De Robertis. "The key to making a perfect baby every time, these experiments tell us, lies in the ability to have a double gradient that will ensure a robust developmental system that produces the same structure time after time," he said.

According to De Robertis, the discovery of such self-regulatory systems could have important implications for efforts to use stem cells to rejuvenate tissues lost to disease or trauma.

"When you try to differentiate stem cells in vitro, you tend to get a complex mix of different cell types," he said. "This, we think, is because the cells are trying to self- regulate into making an embryo. And just as we found that the BMP system self-regulates in a see-saw fashion, other growth factor signaling systems in stem cells might be self-adjusting in this same way." Thus, stem cell scientists might find it necessary to completely knock out self-regulatory systems, as De Robertis and Reversade did with the BMP system, to induce stem cells to produce specific tissues.

De Robertis and colleagues plan to explore how other developmental regulatory pathways might integrate with the BMPs. The ultimate aim of such studies, he said, is to understand the intricate machinery of cellular signaling as an "integrated molecular circuit" that governs embryonic development.


Source: Howard Hughes Medical Institute


Did you know?
Howard Hughes Medical Institute scientists have discovered an important regulatory pathway that enables frog embryos to develop normally even after being split in half - as happens in the development of identical twins. The scientists said their findings suggest that efforts to apply embryonic stem cells therapeutically to regenerate damaged or diseased tissue may have to overcome similar self-regulatory mechanisms present in stem cells. Such mechanisms might otherwise drive stem cells to attempt to differentiate into embryos with a number of cell types, rather than restricting themselves to a desired single type of tissue.

Medicineworld.org: Discovery of Remarkable Developmental Pathway

Asthma| Hypertension| Medicine Main| Diab french| Diabetes drug info| DruginfoFrench| Type2 diabetes| Create a dust free bedroom| Allergy statistics| Cancer terms| History of cancer| Imaging techniques| Cancer Main| Bladder cancer news| Cervix cancer news| Colon cancer news| Esophageal cancer news| Gastric cancer news| Health news| Lung cancer news| Breast cancer news| Ovarian cancer news| Cancer news|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.