MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

From Medicineworld.org: Microbial Choreography

SARS main Acute bacterial meningitis SARS news updates  


Do You Read All Of Our Cancer Blogs?

Do You Read All Of Blogs?
Do you read all of the blogs published by medicineworld.org? Many of our bloggers are busy keeping you updated on the various health related topics. We publish the following blogs at this time.

Cancer blog: I manage the cancer blog with lots of help and support form other bloggers. Through this cancer blog my friends and I try to bring stories of hope for patients with cancer. The cancer blog often republishes important blog posts from other cancer related blogs at Medicineworld.org. If you are searching for a blog that covers wide variety of cancer topics, this may be the one for you.

Breast cancer blog: Breast cancer blog is run by Emily and other bloggers and they bring you the latest stories, news and events that are related to breast cancer. Increasing awareness about breast cancer among women and in the general population is the main goal of this breast cancer blog.

Lung cancer blog: Lung cancer blog is managed by Scott with the help of other bloggers. Through this blog Scott and his friends constantly remind the readers about the dangers of smoking. It's a never-ending struggle against this miserable disease with which a social stigma of smoking is associated.

Colon cancer blog: Colon cancer blog is run by Sue and other bloggers. Sue brings a personal touch to the colon cancer blog since her mother died of colon cancer few years ago. She writes about stories, research news and advances in treatment related to colon cancer.

Prostate cancer blog: Prostate cancer is the most common cancer among American men. American Cancer Society estimates that over 230,000 new cases of prostate cancer occur in the United state every year. This important blog about prostate cancer is run by Mark and other bloggers. This blog brings news, stories, and other personal observations related to prostate cancer.

Medicineworld.org publishes a diabetes watch blog and this blog is run by JoAnn other bloggers. This diabetes watch blog brings you the latest in the field of diabetes. This includes personal stories, advances in diagnosis and treatment, and other observations about diabetes. Improving awareness about diabetes is an important mission of this group.

Janet      

Microbial Choreography


Microbial Choreography
Birds fly together in flocks. Fish swim together in schools. Everyone has seen the beautiful, seemingly choreographed motions these collections of organisms can exhibit.

But surely bacteria, which have no eyes or brain, cannot behave in such a coordinated way. In fact, they do, and scientists are beginning to learn how.

Bacteria are well known to interact with one another through chemical signals - they can "smell" one another, and their behavior and growth may change if they have a number of neighbors. Chemical signaling between bacteria enables cooperative behavior of a bacterial population; one example of this is "cell swarming," where colonies of bacteria grown in a petri dish form complex and beautiful patterns.

More recently, experiments in several laboratories have shown that bacteria swimming in a drop of water also form patterns-jets and whirls that are much larger than the bacteria themselves, and that stir the fluid in ways that an individual swimming bacterium cannot. A key question then is: How do the swimming bacteria interact to form these patterns? .

Reporting in the November 11 issue of Physical Review Letters, Chemical and Biological Engineering Professor Mike Graham's group at the University of Wisconsin-Madison developed a model that offers a partial answer to this question. In this model, each bacterium pushes fluid around as it swims, and simultaneously is buffeted like a boat on a wavy sea by the fluid motions generated by all the other swimming bacteria.

View the depiction of the model online.

There are no other interactions between the bacteria in this model: They cannot smell, feel or see one another, says Graham. This model might be expected to just predict random, uncoordinated swimming of the bacteria, and indeed at low concentrations this is exactly what occurs.

As concentration increases, however, there suddenly comes a point where the swimmers no longer move randomly, but organize into large whirls containing tens to hundreds of bacteria that all move together for a while before swimming off to join another whirl, Graham says. The model thus demonstrates that not only chemical interactions, but also fluid-mechanical interactions between bacteria can lead to large-scale coordinated motions and patterns.

"These results, as well as the experimental observations that motivated them, have potentially important implications for understanding how bacteria feed and sample their environment," Graham says. "They may also suggest a novel strategy for mixing fluids, by the addition of living or artificial swimming micromachines, in microscale devices where conventional approaches to mixing are ineffective."

The research is supported by the National Science Foundation through the UW-Madison Nanoscale Science and Engineering Center.

by James Beal.


Source: University of Wisconsin-Madison


Did you know?
Birds fly together in flocks. Fish swim together in schools. Everyone has seen the beautiful, seemingly choreographed motions these collections of organisms can exhibit. But surely bacteria, which have no eyes or brain, cannot behave in such a coordinated way. In fact, they do, and scientists are beginning to learn how.

Medicineworld.org: Microbial Choreography

SARS Main| SARS Abroad| SARS and Goverment| SARS Information in different languages| Media about SARS| Physicians resources for SARS| Reference information for SARS| Updates on SARS|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.