MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

From Medicineworld.org: New Microchip Technology Assembles FDG

Cancer main Cancer news Breast cancer  


Do You Read All Of Our Cancer Blogs?

Do You Read All Of Blogs?
Do you read all of the blogs published by medicineworld.org? Many of our bloggers are busy keeping you updated on the various health related topics. We publish the following blogs at this time.

Cancer blog: I manage the cancer blog with lots of help and support form other bloggers. Through this cancer blog my friends and I try to bring stories of hope for patients with cancer. The cancer blog often republishes important blog posts from other cancer related blogs at Medicineworld.org. If you are searching for a blog that covers wide variety of cancer topics, this may be the one for you.

Breast cancer blog: Breast cancer blog is run by Emily and other bloggers and they bring you the latest stories, news and events that are related to breast cancer. Increasing awareness about breast cancer among women and in the general population is the main goal of this breast cancer blog.

Lung cancer blog: Lung cancer blog is managed by Scott with the help of other bloggers. Through this blog Scott and his friends constantly remind the readers about the dangers of smoking. It's a never-ending struggle against this miserable disease with which a social stigma of smoking is associated.

Colon cancer blog: Colon cancer blog is run by Sue and other bloggers. Sue brings a personal touch to the colon cancer blog since her mother died of colon cancer few years ago. She writes about stories, research news and advances in treatment related to colon cancer.

Prostate cancer blog: Prostate cancer is the most common cancer among American men. American Cancer Society estimates that over 230,000 new cases of prostate cancer occur in the United state every year. This important blog about prostate cancer is run by Mark and other bloggers. This blog brings news, stories, and other personal observations related to prostate cancer.

Medicineworld.org publishes a diabetes watch blog and this blog is run by JoAnn other bloggers. This diabetes watch blog brings you the latest in the field of diabetes. This includes personal stories, advances in diagnosis and treatment, and other observations about diabetes. Improving awareness about diabetes is an important mission of this group.

Janet      

New Microchip Technology Assembles FDG


New Microchip Technology Assembles FDG
microchip device no bigger than a stamp may soon cheaply and efficiently produce FDG for human imaging. The computer-controlled "lab-on-a-chip" device, designed by graduate student Chung-Cheng Lee of the California Institute of Technology (CalTech; Pasadena) and his colleagues, can rapidly prepare doses of unstable compounds like the PET scan probe from basic chemical feedstock and F-18. The technology has the potential produce a wide variety of molecular imaging agents.

The design is the result of a collaboration between academic and industrial scientists at CalTech, the David Geffen School of Medicine at the University of California at Los Angeles (UCLA), Howard Hughes Medical Institute in Los Angeles, Stanford University School of Medicine (Stanford, CA), Siemens, and Fluidigm Corporation.

"Multistep Synthesis of a Radiolabeled Imaging Probe Using Integrated Microfluidics," by Chung-Chen Lee, et al., was published in the December 16 issue of the journal Science (2005;310:1793-1797). As a proof of principle, the group of academic and commercial researchers demonstrated that FDG could be synthesized by the stamp-size chip. These chips are similar in design to integrated electronic circuits, except that they are made of fluid channels, chambers, and valves that allow them to perform multiple chemical operations, synthesizing molecules and labeling them with radioisotopes. All the operations of the chip are controlled and executed by a standard office computer.

The chips use microfluid circuitry to integrate many chemical processes in a small space with no opportunity for cross-contamination, and it is possible to design and build circuits to synthesize new compounds in about two days, according to Hsian-Rong Tseng, PhD, coauthor and assistant professor of molecular and medical pharmacology, Crump Institute for Molecular Imaging, UCLA.

Commercialization of the new technology is well on the way, according to Stephen Quake, PhD, coauthor and a professor of bioengineering at Stanford University School of Medicine. Integrated microfluidic chips can simplify the production of radiopharmaceuticals, lowering the cost and dramatically accelerating the development of new molecular imaging probes for PET.

FDG was produced on the chip and used to image glucose metabolism in a mouse with a Siemens microPET scanner. The Science paper postulated that this technology can also produce the amount of FDG mandatory for human studies. More importantly, the paper describes the use of a new base technology for producing and delivering a diverse array of molecular imaging molecules and radiolabeled drugs for diagnostic molecular imaging and drug development.

"Chemists synthesize molecules in a lab by mixing chemicals in beakers and repeating experiments a number of times, but one day soon they'll sit at a PC and carry out chemical synthesis with the digital control, speed, and flexibility of today's world of electronics using a tiny integrated microfluidic chip," said Tseng.

There is a vast distribution network of manufacturing sites throughout the world producing PET imaging molecules for hospitals, universities, and pharmaceutical companies. The goal is to integrate these new chips into a commercially produced, table-top device controlled by a PC. Owners of the device would order chips designed to produce specific imaging molecules. Doses could then be produced whenever needed from chemical feedstock and radioisotopes. Technology that enables users to quickly manufacture a variety of probes on an ad hoc basis could fuel growth in the diversity of PET applications.

The study authors and their participating institutions and companies include: Hsian-Rong Tseng, Guodong Sui, Chengyi Jenny Shu, Alek N. Dooley, Nagichettiar Satyamurthy, and SNM members David Stout and Michael Phelps, all of the David Geffen School of Medicine at UCLA; Owen N. Witte of UCLA and the Howard Hughes Medical Institute in Los Angeles; Chung-Cheng Lee, Young-Shik Shin, and Arkadij Elizarov of CalTech; James R. Heath of UCLA and CalTech; Stephen Quake of Stanford; Hartmuth Kolb of Siemens Biomarker Solutions, Culver City, CA, and UCLA; and Jiang Huang, Antoine Davidon, and Paul Wyatt of Fluidigm Corporation, San Francisco, CA.

The research was supported by a Department of Energy grant to the UCLA Institute for Molecular Medicine, the National Cancer Institute, the Norton Simon Research Foundation, the UCLA National Cancer Institute molecular imaging training grant, and commercial support from Siemens and Fluidigm.


Source: Society of Nuclear Medicine


Did you know?
microchip device no bigger than a stamp may soon cheaply and efficiently produce FDG for human imaging. The computer-controlled "lab-on-a-chip" device, designed by graduate student Chung-Cheng Lee of the California Institute of Technology (CalTech; Pasadena) and his colleagues, can rapidly prepare doses of unstable compounds like the PET scan probe from basic chemical feedstock and F-18. The technology has the potential produce a wide variety of molecular imaging agents.

Medicineworld.org: New Microchip Technology Assembles FDG

Cancer terms| History of cancer| Imaging techniques| Cancer Main| Bladder cancer news| Cervix cancer news| Colon cancer news| Esophageal cancer news| Gastric cancer news| Health news| Lung cancer news| Breast cancer news| Ovarian cancer news| Cancer news| Pancreatic cancer news| Prostate cancer news| Endometrial cancer news| General info| What is cancer?| Cancer causes| Is cancer hereditary?| Types of cancer| Cancer statistics| Breast cancer main| Breast cancer symptoms| Colon cancer main| Anal cancer| Bladder cancer main| Lung cancer general| Lung cancer main| Non small cell| Small cell| Ovarian cancer main| Treatment of ovarian cancer| Prostate cancer main| Updates in oncology| Acute myeloid leukemia|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.