MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

From Medicineworld.org: Sneaking Drugs Into The Brain

Neurology main Guillain-Barre Multiple sclerosis  


Do You Read All Of Our Cancer Blogs?

Do You Read All Of Blogs?
Do you read all of the blogs published by medicineworld.org? Many of our bloggers are busy keeping you updated on the various health related topics. We publish the following blogs at this time.

Cancer blog: I manage the cancer blog with lots of help and support form other bloggers. Through this cancer blog my friends and I try to bring stories of hope for patients with cancer. The cancer blog often republishes important blog posts from other cancer related blogs at Medicineworld.org. If you are searching for a blog that covers wide variety of cancer topics, this may be the one for you.

Breast cancer blog: Breast cancer blog is run by Emily and other bloggers and they bring you the latest stories, news and events that are related to breast cancer. Increasing awareness about breast cancer among women and in the general population is the main goal of this breast cancer blog.

Lung cancer blog: Lung cancer blog is managed by Scott with the help of other bloggers. Through this blog Scott and his friends constantly remind the readers about the dangers of smoking. It's a never-ending struggle against this miserable disease with which a social stigma of smoking is associated.

Colon cancer blog: Colon cancer blog is run by Sue and other bloggers. Sue brings a personal touch to the colon cancer blog since her mother died of colon cancer few years ago. She writes about stories, research news and advances in treatment related to colon cancer.

Prostate cancer blog: Prostate cancer is the most common cancer among American men. American Cancer Society estimates that over 230,000 new cases of prostate cancer occur in the United state every year. This important blog about prostate cancer is run by Mark and other bloggers. This blog brings news, stories, and other personal observations related to prostate cancer.

Medicineworld.org publishes a diabetes watch blog and this blog is run by JoAnn other bloggers. This diabetes watch blog brings you the latest in the field of diabetes. This includes personal stories, advances in diagnosis and treatment, and other observations about diabetes. Improving awareness about diabetes is an important mission of this group.

Janet      

Sneaking Drugs Into The Brain


Sneaking Drugs Into The Brain
One of the great challenges for treating Parkinson's diseases and other neurodegenerative disorders is getting medicine to the right place in the brain.

The brain is a complex organ with a number of different types of cells and structures, and it is fortified with a protective barrier erected by blood vessels and glial cells - the brain's structural building blocks - that effectively blocks the delivery of most drugs from the bloodstream.

But now researchers have found a new way to sneak drugs past the blood-brain barrier by engineering and implanting progenitor brain cells derived from stem cells to produce and deliver a critical growth factor that has already shown clinical promise for treating Parkinson's disease.

Writing today in the journal Gene Therapy, UW-Madison neuroscientist Clive Svendsen and colleagues describe experiments that demonstrate that engineered human brain progenitor cells, transplanted into the brains of rats and monkeys, can effectively integrate into the brain and deliver medicine where it is needed.

The Wisconsin team obtained and grew large numbers of progenitor cells from human fetal brain tissue. They then engineered the cells to produce a growth factor known as glial cell line-derived neurotrophic factor (GDNF). In some small but promising clinical trials, GDNF showed a marked ability to provide relief from the debilitating symptoms of Parkinson's. But the drug, which is expensive and hard to obtain, had to be pumped directly into the brains of Parkinson's patients for it to work, as it is unable to cross the blood-brain barrier.

In an effort to develop a less invasive strategy to effectively deliver the drug to the brain, Svendsen's team implanted the GDNF secreting cells into the brains of rats and elderly primates. The cells migrated within critical areas of the brain and produced the growth factor in quantities sufficient for improving the survival and function of the defective cells at the root of Parkinson's.

"This work shows that stem cells can be used as drug delivery vehicles in the brain," says Svendsen, a professor of anatomy whose laboratory is at the UW-Madison Waisman Center.

The new Wisconsin study, whose lead author is Soshana Behrstock, depended on formative brain cells that were coaxed from blank-slate stem cells. The progenitor neural cells were genetically modified to secrete the growth factor when implanted in the striatum, a large cluster of cells in the brain that controls movement, balance and walking.

To work effectively, the cells in the striatum require dopamine, a chemical that is produced deep in the brain and that travels up nerve fibers to the striatum where it is used to keep critical cells functional. Loss of the ability to produce dopamine is the root cause of Parkinson's, a disease that afflicts about 1.5 million people in the United States.

In the new Wisconsin study, the GDNF-producing cells transplanted in the striatum of animals with a condition like Parkinson's showed not only that a critical drug could be delivered to the right place, but that the drug was delivered in a way that promoted its therapeutic potential. The scientists reported new nerve fiber growth in the striatum and the transport of the critical nerve growth factor GDNF from the striatum to the substantia niagra, the part of the brain that harbors the cells that produce dopamine.

"In Parkinson's, the striatum loses fibers," Svendsen explains. But cells in the striatum exposed to GDNF in the Wisconsin study showed an ability to recover and sprout new fibers.

"It actually seems to work better in the terminal (striatum)," Svendsen says. "The bonus is it gets transported back to the substantia niagra."

The transplanted cells, according to Behrstock, survived and continued to produce GDNF in laboratory animals for up to three months.

One hurdle that needs to be overcome before such a technique could be attempted in human patients, says Svendsen, is developing a method to switch transplanted cells on or off and thus control their drug delivery capabilities. Working with engineered cells in culture, the Wisconsin group found they could switch the cells on and off using a second drug. Doing so in animal models, however, was more difficult and the issue will need to be addressed in new experiments, according to Svendsen.

The new study, Svendsen argues, proves that progenitor cells - cells that can now be made in large quantities in the laboratory - can be crafted to help clinicians deliver drugs where they are needed most in the body. Delivering medicine to the brain, whose blood-brain barrier effectively excludes more than 70 percent of all drugs, would be an particularly valuable use for the cells. Such a new method may be useful for treating many neurodegenerative diseases beyond Parkinson's, he says.

In addition to Svendsen and Behrstock, authors of the new Gene Therapy paper include Allison Ebert, Jacqueline McHugh, Stephen Vosberg, Elizabeth Capowski, Bernard Schneider and Derek Hei, all of UW-Madison; Jeffery Kordower of Rush University Medical Center; and Patrick Aebischer of the Swiss Federal Institute of Technology.

by Terry Devitt.


Source: University of Wisconsin-Madison


Did you know?
One of the great challenges for treating Parkinson's diseases and other neurodegenerative disorders is getting medicine to the right place in the brain. The brain is a complex organ with a number of different types of cells and structures, and it is fortified with a protective barrier erected by blood vessels and glial cells - the brain's structural building blocks - that effectively blocks the delivery of most drugs from the bloodstream.

Medicineworld.org: Sneaking Drugs Into The Brain

Acute bacterial meningitis| Alzheimer's disease| Carpal tunnel syndrome| Cerebral aneurysms| Cerebral palsy| Chronic fatigue syndrome| Cluster headache| Dementia| Epilepsy seizure disorders| Febrile seizures| Guillain barre syndrome| Head injury| Hydrocephalus| Neurology| Insomnia| Low backache| Mental retardation| Migraine headaches| Multiple sclerosis| Myasthenia gravis| Neurological manifestations of aids| Parkinsonism parkinson's disease| Personality disorders| Sleep disorders insomnia| Syncope| Trigeminal neuralgia| Vertigo|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.