MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

Medicineworld.org: Inflammation And Metastasis Of Prostate Cancer

Back to prostate cancer blog Blogs list Cancer blog  


Subscribe To Prostate Cancer Blog RSS Feed  RSS content feed What is RSS feed?

Inflammation And Metastasis Of Prostate Cancer

Inflammation And Metastasis Of Prostate Cancer
A number of would assume that "mounting an immune response" or "having your body fight the cancer" is a good thing. Now, research at the University of California, San Diego (UCSD) School of Medicine strongly suggests that inflammation linked to the progression of tumors actually plays a key role in the metastasis of prostate cancer.

The research, appearing online March 19 in advance of publication in the journal Nature, identifies a mechanism which triggers metastasis, which is the spread of cancer in late stages of prostate cancer development. The findings by Michael Karin, Ph.D., professor of pharmacology in UCSD's Laboratory of Gene Regulation and Signal Transduction, and his colleagues may help solve the puzzle of why it takes so long for cancer to metastasize, as well as what causes it to do so. Furthermore, this new work may lead to development of anti-metastatic therapies.

A major hypothesis in cancer research has been that whether the cancer metastisizes or not is determined by genetic changes within the cancer cell itself. But this hypothesis didn't explain why metastases appear a number of years after the initial tumor.

"Our findings suggest that promoting inflammation of the malignant tissue, for instance, by performing prostate biopsies, may, ironically, hasten progression of metastasis," said Karin. "We have shown that proteins produced by inflammatory cells are the 'smoking gun' behind prostate cancer metastasis. The next step is to completely indict one of them".

One in six men will be diagnosed with prostate cancer, and one in 33 will die of metastatic disease. Early tumors confined to the prostate can be treated, but no effective therapys are available for metastatic disease, as per Steven L. Gonias, M.D., Ph.D., professor and chair of the UCSD Department of Pathology, a study investigator.

"This study helps explain the paradox that, in certain types of malignancy, inflammation within a cancer may be counterproductive," said Gonias.

In research using mouse models and confirmed in human tissue, the researchers found that a protein kinase called IkB kinasea (IKKa) turns down the expression of a single gene called Maspin, which has well-established anti-metastatic activity in breast and prostate cancers. They observed that the production of Maspin is repressed by a series of events triggered by tumor inflammatory cells, with the result that prostate cancer cells spread.

"An excellent inverse connection between IKKa activation and Maspin production was detected, such that advanced prostate cancer cells contain high amounts of activated IKKa in their nuclei and express little or no Maspin," said Karin. He noted that a perfect connection between nuclear accumulation of activated IKKa and reduced maspin expression was also seen in human prostate cancer, and both correlated with the clinical stage of the disease.

Karin and colleagues discovered a signaling pathway that increased metastases in a mouse model of prostate cancer. The pathway is activated by a ligand that binds to a Receptor that Activates Nuclear factor Kappa-B (RANK). RANK ligand has been shown in prior studies to be an important inflammatory protein (cytokine) that can lead to bone loss through activation of bone resorbing cells.

RANK ligand, produced by inflammatory cells that invade advanced prostate tumors, triggers a chain reaction in which IKKa is activated, allowing it to enter the nucleus of the cancer cell, repressing Maspin. IKKa is a key linchpin in the pathway that turns off the Maspin gene and activates the metastatic program. The new results also support the view that RANK ligand is a general promoter of prostate, and possibly breast, cancer metastasis.

"Maspin is a very potent inhibitor of metastasis; in a patient with metastasis, cells have found a way to turn off Maspin, which may depend on invasion of the tumor with RANK ligand-producing cells that activate IKKa," said Karin.

Malignancies progress through stages. In early, non-metastatic tumors, a high level of Maspin is present, but it is turned off in late stages. Early tumors contain low amounts of active nuclear IKKa, whereas late-stage tumors contain the highest levels of active nuclear IKKa. The scientists also found a striking elevation in expression of RANK ligand in late tumors, but it was not expressed by the cancer cells. Instead, it is expressed by invading inflammatory cells. Interference with RANK ligand production or activation, as well as interference with IKKa activation, may offer new therapeutic strategies for prevention of metastatic disease.


Posted by: Mark    Source




Did you know?
A number of would assume that "mounting an immune response" or "having your body fight the cancer" is a good thing. Now, research at the University of California, San Diego (UCSD) School of Medicine strongly suggests that inflammation linked to the progression of tumors actually plays a key role in the metastasis of prostate cancer.

Medicineworld.org: Inflammation And Metastasis Of Prostate Cancer

Main Page| Cancer blog| Cancer blogs list| Lung cancer blog| Colon cancer blog| Prostate cancer blog| Breast cancer blog| Diabetes watch blog| Heart watch blog| Allergy blog| Bladder cancer blog| Cervical cancer blog| Colon cancer news blog| Diabetes news blog| Esophageal cancer blog| Gastric cancer blog| Health news blog| Heart news blog| Infectious disease blog| Kidney watch blog| Lung disease blog| Lung cancer news blog| Mesothelioma blog| Neurology blog| Breast cancer news blog| OBGYN blog| Ophthalmology blog| Ovarian cancer blog| Cancer news blog| Pancreas cancer blog| Pediatrics blog| Prostate cancer news blog| Psychology blog| Research blog| Rheumatology blog| Society news blog| Uterine cancer blog| Weight watch blog|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.