MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

Medicineworld.org: Clues To Eating Disorders

Back to weightwatch Blogs list Cancer blog  


Subscribe To Weightwatch RSS Feed  RSS content feed What is RSS feed?

Clues To Eating Disorders

Clues To Eating Disorders Dr. Leon Avery (left), professor of molecular biology, led a team that included Dr. Young-jai You, postdoctoral researcher in molecular biology and pharmacology, and discovered a series of biochemical reactions that control how simple worms feed, opening the way for further research into the complicated nature of hunger.
In research that may have implications for studying eating disorders in humans, a worm the size of a pinhead is helping scientists at UT Southwestern Medical Center unravel the mechanisms of hunger.

The scientists have found a series of biochemical reactions that control how the simple worm feeds, opening the way for further research into the complicated nature of hunger. Central to the research is a worm called Caenorhabditis elegans, which eats bacteria by contracting and relaxing a large muscle called the pharynx to suck in its prey. When it can't find food, C. elegans reacts by pumping the pharynx harder.

"Despite the prevalence of eating disorders from obesity to anorexia, the identity and mechanism of action of starvation signals are largely unknown," the scientists wrote in the paper, which will appear in the recent issue of Cell Metabolism.

The study of the signaling pathways in feeding muscles suggests that feeding disorders may result from inappropriate behavioral responses to starvation signals, they wrote.

"Instead of being vague about what hunger is, we can be specific, at least in these cells in these particular animals," said Dr. Leon Avery, professor of molecular biology and senior author of the study. "There's been a lot of work on hunger and behavior, but hunger has not been well-defined at the molecular level".

The UT Southwestern scientists focused on receptor molecules on the surface of the C. elegans' pharynx. Receptors can be either activated or blocked, thus triggering or stopping reactions inside a cell, depending on what substance binds to them.

In this case, the researchers focused on muscarinic receptors, which regulate the speed of the heart, contraction of the pupil and other bodily functions. Their experiments followed biochemical reactions inside the pharynx muscle in both normal worms and mutants that were abnormally sensitive to starvation.

Activating the worms' muscarinic receptors triggered the same behavior and biochemical response that starvation did, showing that the receptor controlled the muscle's response to hunger.

When starved worms were placed back in the presence of food, their pharynxes showed a great increase in pumping rate compared to well-fed worms, suggesting that the muscle's biochemistry and physiology had altered to enhance the ingestion of food.

The findings may aid in understanding feeding in mammals, which also have muscarinic receptors, eventhough mice and humans have five types, while C. elegans has only three.

When mice, for example, are genetically altered to lack the gene for one type of muscarinic receptor, they eat less and are skinnier than their normal counterparts.

One of the next research steps, Dr. Avery said, is to investigate what alerts the worm to its hunger. For example, do the nerve cells that respond to environmental cues and send the chemical signals that active the muscarinic receptors become more active during starvation, or does the pharynx somehow become more sensitive to those nerve signals?.

The answers to these and other questions may eventually help guide research in mammals, Dr. Avery said.

Other UT Southwestern scientists involved in the study were Dr. Young-jai You, postdoctoral researcher in molecular biology and pharmacology, and Dr. Melanie Cobb, professor of pharmacology and dean of UT Southwestern Graduate School of Biomedical Sciences. Dr. Jeongho Kim, a visiting professor from Inha University in South Korea, also participated.



Posted by: JoAnn    Source




Did you know?
In research that may have implications for studying eating disorders in humans, a worm the size of a pinhead is helping scientists at UT Southwestern Medical Center unravel the mechanisms of hunger. The scientists have found a series of biochemical reactions that control how the simple worm feeds, opening the way for further research into the complicated nature of hunger. Central to the research is a worm called Caenorhabditis elegans, which eats bacteria by contracting and relaxing a large muscle called the pharynx to suck in its prey. When it can't find food, C. elegans reacts by pumping the pharynx harder.

Medicineworld.org: Clues To Eating Disorders

Asthma| Hypertension| Medicine Main| Diab french| Diabetes drug info| DruginfoFrench| Type2 diabetes| Create a dust free bedroom| Allergy statistics| Cancer terms| History of cancer| Imaging techniques| Cancer Main| Bladder cancer news| Cervix cancer news| Colon cancer news| Esophageal cancer news| Gastric cancer news| Health news| Lung cancer news| Breast cancer news| Ovarian cancer news| Cancer news|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.