MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

Medicineworld.org: Improving mammogram accuracy

Back to breast cancer blog Blogs list Cancer blog  


Subscribe To Breast Cancer Blog RSS Feed  RSS content feed What is RSS feed?

Improving mammogram accuracy




Members of a Syracuse University research team have shown that an obscure phenomenon called stochastic resonance (SR) can improve the clarity of signals in systems such as radar, sonar and even radiography, used in medical clinics to detect signs of breast cancer. It does this by adding carefully selected noise to the system.

The result has been a distinct improvement in the system's ability to correctly identify premalignant lesions, plus a 36 percent reduction in false positives. The inventors have developed a novel method of calculating precisely the correct type and level of noise to add to existing noise in radiography or a similar system.



Improving mammogram accuracy

"We see a broad spectrum of applications for this technology," says research assistant professor Hao Chen. "If a system's performance is unsatisfactory, we add noise to the system based on a specific algorithm that can significantly improve system performance".

A patent covering the technology has been issued to Chen, Distinguished Professor Pramod K. Varshney and research professor James Michels. All are linked to SU's L.C. Smith College of Engineering and Computer Science.

In mammography studies carried out by doctoral candidate Renbin Peng, the challenge was to identify clusters of micro-calcifications in breast tissue. These early signs of premalignant conditions average only 0.3 mm in size and offer only subtle contrast with surrounding tissue. In addition to improving detection of these lesions, the group has reduced false positives by more than a third.

While the current focus of the research group is on medical uses of stochastic resonance, other applications are expected in enhancing audio, video, geophysical, environmental, radar and other signals. The group has been receiving support from the U.S. Air Force Office of Scientific Research.

Ongoing investigations by the Syracuse group are expected to produce further improvements in the efficiency and robustness of the SR-based detection techniques.

A paper by the inventors on theory of stochastic resonance stochastic resonance effect in signal detection was published by IEEE Transactions in Signal Processing in July 2007 and became one of the top 10 downloads of that month. Another paper, covering the mammography studies, co-authored by Peng was published in IEEE Journal of Selected Topics in Signal Processing in February 2009.


Posted by: Janet    Source




Did you know?
Members of a Syracuse University research team have shown that an obscure phenomenon called stochastic resonance (SR) can improve the clarity of signals in systems such as radar, sonar and even radiography, used in medical clinics to detect signs of breast cancer. It does this by adding carefully selected noise to the system.

Medicineworld.org: Improving mammogram accuracy

BREAST CANCER MAIN| Home| Breast cancer news| Common terms| Breast cancer treatment| Breast cancer treatment by stage| Mammogram and breast cancer screening| Surgical treatment of breast cancer| Chemotherapy of breast cancer| Chemo drugs used in breast cancer| Doxorubicin| Cyclophosphamide| Methotrexate| Hormonal therapy of breast cancer| Radiation therapy of breast cancer| Monoclonal therapy| High dose chemotherapy for breast cancer| Recurrent breast cancer| Bisphosphonates and breast cancer| Pregnancy and breast cancer| Risk factors for breast cancer| Risk details| My risk| Comprehensive breast cancer information| Breast cancer statistics| African Americans and breast cancer| Ashkenazi and breast cancer| Asians| Hispanic| Men| Native Americans| Older women and breast cancer| Younger women| Pregnant women and breast cancer| BRCA|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.