MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

Medicineworld.org: RNA snippet suppresses spread of aggressive breast cancer

Back to breast cancer blog Blogs list Cancer blog  


Subscribe To Breast Cancer Blog RSS Feed  RSS content feed What is RSS feed?

RNA snippet suppresses spread of aggressive breast cancer




A low cellular level of a tiny fragment of RNA appears to increase the spread of breast cancer in mouse models of the disease, as per scientists at Whitehead Institute for Biomedical Research.

Measuring levels of this so-called microRNA, which is also linked to metastatic breast cancer in humans, may more accurately predict the likelihood of metastasis (which accounts for 90% of cancer-related deaths) and ultimately help determine patient prognoses.



RNA snippet suppresses spread of aggressive breast cancer
Image courtesy of University of Illinois

In the study, whose results are published in the June 12 issue of Cell, Scott Valastyan, a graduate student in Whitehead Member Robert Weinberg's laboratory, screened patient breast cancer samples for microRNAs with potential roles in metastasis. MicroRNAs are single strands of RNA about 21-23 nucleotides long. Within a cell, a single microRNA can fine-tune the expression of dozens of genes simultaneously. This capability could be especially important in metastasis, a multi-step process that could be influenced by a single microRNA at several points.

The screened samples were classified as either metastatic cancer or non-metastatic cancer. After analysis, the microRNA miR-31 stood out because of its inverse correlation with metastasis. In samples where a patient's original tumor had not metastasized, the cancer cells retained high levels of the microRNA. But where the tumor had metastasized, the cancer cells came to possess lower levels of miR-31.

The functional role of miR-31 in metastasis regulation was then confirmed in mice. When Valastyan removed miR-31 from normally non-aggressive breast cancer cells and implanted those cells into mice, the cells formed highly aggressive tumors. Mice injected with the cancer cells lacking miR-31 had 6 to 10 times more cancer cells that metastasized to their lungs than did their counterparts implanted with unmodified cancer cells.

To see how increasing miR-31 levels could affect metastasis, Valastyan introduced miR-31 into breast cancer cells that readily metastasize. After injecting these altered cells into mice, the mice had four to 40 times fewer metastases than mice injected with the unaltered cells.

Valastyan says that quantifying miR-31 levels in a patient's cancer cells could one day support a more accurate prognosis. Currently, breast cancers are divided into three major categories, two of which are typically linked to poor prognoses.

"This microRNA seems to be quite unique, in that it seems to provide some prognostic utility across these existing subclassifications [of cancers]," says Valastyan. A better-defined prognosis could help patients determine whether they might benefit from poorly tolerated cancer therapies.

In addition, miR-31 could be a useful target for cancer treatment. Weinberg, who is also a professor of biology at MIT, is cautiously optimistic. "At present, it's quite difficult to inhibit the action or promote the actions of a microRNA in a whole organism," he says, "but in the future, microRNAs like this one might prove to be very important in altering the clinical progression of a tumor or causing it to revert to a more non-malignant state".

This research was supported by the National Institutes of Health (NIH), MIT Ludwig Center for Molecular Oncology, U.S. Department of Defense (DoD), Breast Cancer Research Foundation, Harvard Breast Cancer Specialized Program of Research Excellence (SPORE), and a DoD Breast Cancer Research Program (BCRP) Idea Award.


Posted by: Janet    Source




Did you know?
A low cellular level of a tiny fragment of RNA appears to increase the spread of breast cancer in mouse models of the disease, as per scientists at Whitehead Institute for Biomedical Research. Measuring levels of this so-called microRNA, which is also linked to metastatic breast cancer in humans, may more accurately predict the likelihood of metastasis (which accounts for 90% of cancer-related deaths) and ultimately help determine patient prognoses.

Medicineworld.org: RNA snippet suppresses spread of aggressive breast cancer

BREAST CANCER MAIN| Home| Breast cancer news| Common terms| Breast cancer treatment| Breast cancer treatment by stage| Mammogram and breast cancer screening| Surgical treatment of breast cancer| Chemotherapy of breast cancer| Chemo drugs used in breast cancer| Doxorubicin| Cyclophosphamide| Methotrexate| Hormonal therapy of breast cancer| Radiation therapy of breast cancer| Monoclonal therapy| High dose chemotherapy for breast cancer| Recurrent breast cancer| Bisphosphonates and breast cancer| Pregnancy and breast cancer| Risk factors for breast cancer| Risk details| My risk| Comprehensive breast cancer information| Breast cancer statistics| African Americans and breast cancer| Ashkenazi and breast cancer| Asians| Hispanic| Men| Native Americans| Older women and breast cancer| Younger women| Pregnant women and breast cancer| BRCA|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.