MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

Medicineworld.org: Link Between Parkinson's and Pesticides

Back to neurology news Blogs list Cancer blog  


Subscribe To Neurology News RSS Feed  RSS content feed What is RSS feed?

Link Between Parkinson's and Pesticides




In a new article reported in the journal Molecular Neurodegeneration, scientists at the University of Missouri School of Medicine take some of the first steps toward unraveling the molecular dysfunction that occurs when proteins are exposed to environmental toxins. Their discovery helps further explain recent NIH findings that demonstrate the link between Parkinson's disease and two particular pesticides - rotenone and paraquat.



Link Between Parkinson's and Pesticides
Zezong Gu, right, MD, PhD, assistant professor of pathology and anatomical sciences at MU, and Fajun Meng, an MU visiting scholar, examine a model of parkin clusters. Their research yields new details about how parkin proteins and pesticides contribute to Parkinson's disease. After Alzheimer's disease, Parkinson's disease is the most common neurodegenerative disorder.

"Fewer than 5 percent of Parkinson's cases are attributed to genetics, but more than 95 percent of cases have unknown causes," said Zezong Gu, MD, PhD, assistant professor of pathology and anatomical sciences. "This study provides the evidence that oxidative stress, possibly due to sustained exposure to environmental toxins, may serve as a primary cause of Parkinson's. This helps us begin to unveil why a number of people, such as farmers exposed to pesticides, have an increased occurence rate of the disease."

Researchers previously understood that Parkinson's is linked to oxidative stress, which is when electronically unstable atoms or molecules damage cells. The MU study yields more specific information about how oxidative stress causes parkin, a protein responsible for regulating other proteins, to malfunction.

These findings come as the result of collaborative research conducted by Gu and the paper's primary author, Fanjun Meng, an MU visiting scholar from the Chinese Academy of Sciences Beijing Institute of Genomics, as well as colleagues at the Sanford-Burnham Medical Research Institute and the University of California at San Diego. The article also represents the first published work from scientists at the new MU Center for Translational Neuroscience.

Gu and his with his Burnham colleagues invented a new antibody that allowed them to detect how oxidative stress affected proteins when exposed to a variety of environmental toxins, such as the pesticide rotenone. They then specifically demonstrated how oxidative stress caused parkin proteins to cluster together and malfunction, rather than performing normally by cleaning up damaged proteins.

"This whole process progresses into Parkinson's disease," Gu said. "We illustrated the molecular events that lead to the more common form of the disorder in the vast majority of cases with unknown causes. Knowing this, we can find ways to correct, prevent and reduce the occurence rate of this disease."

Scientists used mass spectrometry to analyze findings. They measured parkin fragments, pinpointed whether the proteins were modified and where that modification occurred. This enabled them to map the location of parkin oxidation and further compare these events with genetic mutations in patients with Parkinson's disease published in the literature. Their findings demonstrated that parkin protein oxidation in certain locations corresponds with the location of mutations. They then sought to determine the outcome of the modification - finding their results to be consistent in multiple disease models, including cell cultures and tissue samples from rodents, monkeys and human postmortem Parkinson's patients.

Gu and Meng hope to extend their investigation into preventive therapys and therapies through work at MU's Center for Botanical Interaction Studies. Created with a new $7.6 million grant from the National Institutes of Health, MU's center is one of five in the country selected to lead interdisciplinary and collaborative research on botanical dietary supplements.

After Alzheimer's disease, Parkinson's disease is the most common neurodegenerative disorder. Approximately 60,000 new cases of Parkinson's disease are diagnosed each year. By some estimates, at least one million people in the United States have the disease, which has no cure.


Posted by: Daniel    Source




Did you know?
In a new article reported in the journal Molecular Neurodegeneration, scientists at the University of Missouri School of Medicine take some of the first steps toward unraveling the molecular dysfunction that occurs when proteins are exposed to environmental toxins. Their discovery helps further explain recent NIH findings that demonstrate the link between Parkinson's disease and two particular pesticides - rotenone and paraquat.

Medicineworld.org: Link Between Parkinson's and Pesticides

Acute bacterial meningitis| Alzheimer's disease| Carpal tunnel syndrome| Cerebral aneurysms| Cerebral palsy| Chronic fatigue syndrome| Cluster headache| Dementia| Epilepsy seizure disorders| Febrile seizures| Guillain barre syndrome| Head injury| Hydrocephalus| Neurology| Insomnia| Low backache| Mental retardation| Migraine headaches| Multiple sclerosis| Myasthenia gravis| Neurological manifestations of aids| Parkinsonism parkinson's disease| Personality disorders| Sleep disorders insomnia| Syncope| Trigeminal neuralgia| Vertigo|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.