MedicineWorld.Org
Your gateway to the world of medicine
Home
News
Cancer News
About Us
Cancer
Health Professionals
Patients and public
Contact Us
Disclaimer

Medicineworld.org: Stem cell model offers clues to cause of inherited ALS

Back to neurology news Blogs list Cancer blog  


Subscribe To Neurology News RSS Feed  RSS content feed What is RSS feed?

Stem cell model offers clues to cause of inherited ALS




An international team of researchers led by scientists at the University of California, San Diego School of Medicine have used induced pluripotent stem cells (iPSCs) derived from patients with amyotrophic lateral sclerosis (ALS) to reveal for the first time how reduced levels of a specific protein may play a central role in causing at least one inherited form of the disease.



Stem cell model offers clues to cause of inherited ALS
This image shows motor neurons (green) derived from ALS induced pluripotent stem cells forming neuromuscular junctions (red).

Credit: Image courtesy of Alysson Muotri, UCSD.


The work, reported in the June 2011 online issue of the journal Human Molecular Genetics, could help researchers overcome a major hurdle in the study and therapy of ALS, an incurable neuromuscular disorder also known as Lou Gehrig's disease. ALS is universally fatal, with a median age of onset of 55 years and survival of two to five years after symptoms appear. Past research efforts have long been stymied by difficulties in translating successful drug tests in animal models of ALS to humans.

"There is an urgent need for ALS human models that can be translated into clinical trials to verify therapeutic targets in the human genetic background," said Alysson R. Muotri, PhD, assistant professor in the UCSD Departments of Pediatrics and Cellular and Molecular Medicine, and one of the study's senior authors. "Rodents have been used in the past and still have a critical impact in unveiling the complexity of ALS, but the vast majority of drugs that have demonstrated efficacy in rodent models have not done the same in preclinical and clinical human trials".

In the new work, Muotri and his colleagues turned to iPSCs derived from the skin cells of patients with a familial form of ALS called ALS8 to create motor neurons that provided a novel in vitro model of the disease. iPSCs from ALS patients have been described before, but finding cellular and molecular phenotypes has proved to be a continuing challenge. The use of a familial form of ALS offered an advantage since the mutated gene could be tracked during motor neuron differentiation.

"We don't know what causes most cases of ALS, but for roughly 10 percent of patients with ALS, the disease is the result of inherited genetic mutations," Muotri said. "One of these familial forms is ALS8, which results from mutations in the VAPB gene. Using iPSCs from several patients from two independent families, we observed that VAPB protein levels are reduced in ALS8-derived motor neurons in comparison to similar cells from non-carrier siblings of ALS8 patients".

Muotri said the finding suggests reduced VAPB protein levels appears to be a key to the development of ALS8 and perhaps other forms of the disease as well, including sporadic or non-hereditary ALS, where reduced VAPB protein levels have also been documented.

"The VAPB protein is involved in a number of cellular processes, so it seems likely it contributes to the pathogenesis of other forms of ALS," Muotri said. "We don't yet know how the loss of VAPB is involved in causing familial or sporadic ALS, but the new ability to study this disease in human cells provides an unprecedented opportunity to answer that question, to develop new early diagnostic tools and to identify new targets for future drugs and therapies." .


Posted by: Daniel    Source




Did you know?
An international team of researchers led by scientists at the University of California, San Diego School of Medicine have used induced pluripotent stem cells (iPSCs) derived from patients with amyotrophic lateral sclerosis (ALS) to reveal for the first time how reduced levels of a specific protein may play a central role in causing at least one inherited form of the disease.

Medicineworld.org: Stem cell model offers clues to cause of inherited ALS

Acute bacterial meningitis| Alzheimer's disease| Carpal tunnel syndrome| Cerebral aneurysms| Cerebral palsy| Chronic fatigue syndrome| Cluster headache| Dementia| Epilepsy seizure disorders| Febrile seizures| Guillain barre syndrome| Head injury| Hydrocephalus| Neurology| Insomnia| Low backache| Mental retardation| Migraine headaches| Multiple sclerosis| Myasthenia gravis| Neurological manifestations of aids| Parkinsonism parkinson's disease| Personality disorders| Sleep disorders insomnia| Syncope| Trigeminal neuralgia| Vertigo|

Copyright statement
The contents of this web page are protected. Legal action may follow for reproduction of materials without permission.